5B36 Isolated, Potentiometer Input

Functional Description

The 5B36 is a single-channel signal conditioning module that amplifies, isolates, filters, buffers a wide variety of three-wire potentiometers and two-wire rheostats (slidewires). The module provides an accurately scaled, low-noise low-impedance output of 0 to +5 V.

Accurate and Stable Performance

The 5B36 supplies protected potentiometer/slidewire excitation from a pair of closely matched precision current sources designed to cancel errors due to lead resistances. A low-drift chopper-stabilized differential amplifier allows use of a very low excitation current to minimize error due to potentiometer self-heating. The amplifiers low input offset

drift (±0.004 Ω /°C) and gain drift of 30 ppm/°C assure accuracy over the full operating temperature range.

True Three-Port Isolation

The floating, differential input circuit on the field side eliminates the need for any input grounding. Signal and power isolation by transformer coupling uses a proprietary modulation technique for linear, stable and reliable performance. A demodulator on the

computer side of the signal transformer recovers the original signal, which is then filtered and buffered to provide a low-noise, lowimpedance output signal. True three-port isolation (Input-Output-Power) includes common-mode ratings of : 1500 V rms between inputoutput and input-power; 250 V rms between power and output - no return path is required between the power and signal output commons.

Filtering and Protection

An optimized five-pole Butterworth filter (with a 4-Hz bandwidth) provides 116 dB of normal-mode rejection (noise on signal) at 60 Hz and 108 dB at 50 Hz. Output noise is an exceptionally low 0.3 mV pk-pk in a 100 kHz bandwidth and 6 mV pk-pk in a 5 MHz bandwidth. The 5B36 protects the computer side from damage due to field-side overvoltage faults. The module withstands 240 V rms at the input terminals without damage, thereby shielding the internal computer-side circuitry from field-side overvoltage conditions. In addition, the 5B36 is mix-and-match and hot swappable with all other 5B Series modules, so can be inserted or removed from any socket in the same backplane without disrupting system power.

Convenience Features

A series output switch eliminates the need for external multiplexing in many applications. The switch is turned on by an active-low enable input. If the switch is to be on at all times, the enable-input should be grounded to output common as it is on the 5B01 and 5B08 backplanes.

Model	Input Range	Output Range
5B36-01	$_0\Omega_{ ext{to 100}}\Omega$	0 V to +5 V
5B36-02	$_0\Omega_{to500}\Omega$	0 V to +5 V
5B36-03	$_{0}\Omega_{\text{to 1 k}}\Omega$	0 V to +5 V
5B36-04	$_0\Omega_{ ext{to 10 k}}\Omega$	0 V to +5 V
5B36-Custom	*	*

* Custom Input/Output ranges are available.

5B36 Specifications (typical @ +25°C and $V_s = +5 V dc$)

Description	Model 5B36			
Input Ranges				
Standard Ranges	$_0 {f \Omega}_{ m to 10 k} {f \Omega}$ (Refer to Model Table)			
Custom Ranges	$_0 {\Omega}_{ m to 10 k} {\Omega}$ (Refer to Ordering Section)			
Output Range ($R_L > 50 \text{ k} \Omega$)	0 V to +5 V			
Accuracy ¹				
Initial @ +25°C ±0.08% Span				
Input Offset vs. Temperature				
100 Ω , 500 Ω , 1 k Ω Sensors	±0.004 Ω/°C			
10 k Ω Sensor	±0.01 Ω/°C			
Output Offset vs. Temperature	±20 μV/°C			
Gain vs. Temperature	±0.003% of Reading/°C			
Input Resistance				
Power On	> 1000 MΩ			
Power Off	_{200 k} Ω			
Overload	200 k Ω			
	Noise			
Input, 0.1 Hz to 10 Hz Bandwidth	0.2 µV rms			
Output, 100 kHz Bandwidth	100 μV rms (0.3 mV peak-peak)			
Output, 1 MHz Bandwidth	1.5 mV peak-peak			
Output, 5 MHz Bandwidth	6 mV peak-peak			
Bandwidth, -3 dB	4 Hz			
Output Rise Time, 10% to 90% Span	100 ms			
Common-Mode Voltage (CMV)				
Input-to-Output, Continuous	1500 V rms, maximum			
Input-to-Power, Continuous	1500 V rms, maximum			
Output-to-Power, Continuous ²	250 V rms, maximum			
Transient	ANSI/IEEE C37.90.1-1989			
Common Mode Rejection (CMR)				
1 kΩ Source Imbalance, 50/60 Hz	170 dB			
Normal Mode Rejection (NMR)	116 dB @ 60 Hz; 108 dB @ 50 Hz			
Sensor Excitation Current				
$100 \Omega, 500 \Omega, 1 \mathrm{k}\Omega$ Sensors	0.25 mA			
10 k Ω Sensor	0.1 mA			

100 Ω , 500 Ω , 1 k Ω Sensors	$_{\pm 0.005} \Omega / \Omega$		
10 k Ω Sensor	±0.01 Ω/Ω		
Input Protection			
Continuous	240 V rms, maximum		
Transient	ANSI/IEEE C37.90.1-1989		
Output Resistance	₂₅ Ω		
Voltage Output Protection	Continuous Short to Ground		
Output Current Limit	±9 mA		
Output Selection Time	6 μ s to ±1 mV of V _{out} @ C _{load} = 0 to 2,000 pF		
Output Enable Control ²			
Max Logic "0"	+0.8 V		
Min Logic "1"	+2.4 V		
Max Logic "1"	+100 V		
Input Current "0", "1"	0.5 μΑ		
Power Supply Voltage	+5 V dc ±5%		
Power Supply Current	15 mA		
Power Supply Sensitivity, RTI	±2 μ V/% of V_s		
Mechanical Dimensions	2.275" x 2.375" x 0.595" (57.8 mm x 59.1 mm x 15.1 mm)		
Environmental			
Temperature Range			
Rated Performance	-40°C to +85°C		
Operating	-40°C to +85°C		
Storage	-40°C to +85°C		
Relative Humidity	0 to 93% @ +40°C noncondensing		
RFI Susceptibility	±0.5% Span error @ 400 MHz, 5 Watt, 3 ft		

• ±0.025 Ω For Cu RTD's; ±0.1 Ω For Ni RTD's.

¹Includes the combined effects of repeatability, hysteresis, and nonlinearity error. Loads heavier than 50 k Ω will degrade nonlinearity and gain temperature coefficient.

•

²The user's board layout must separate Power Common from Output Common. When the output switch is not used, connect the Enable Input to the Output Common. Output Common is connected to power common when the 5B36 is installed on a 5B Series backplane.