5B37 Isolated Thermocouple Input

Functional Description

The 5B37 is a single-channel signal conditioning module that interfaces, amplifies and filters J, K, T, E, R, S, B, N, and C-type thermocouple and provides an isolated and protected precision output of 0 to +5 V.

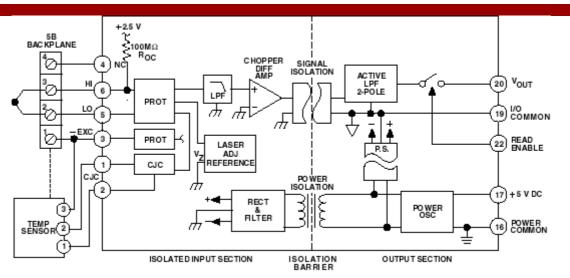
Accurate and System-Ready

Internal cold-junction compensation largely corrects errors arising from parasitic thermocouples formed by thermocouple connection to the input screw terminals, providing an accuracy of $\pm 0.25^{\circ}$ C @ $\pm 25^{\circ}$ C ambient temperature. The module generates a predictable upscale signal to indicate an open thermocouple; for a downscale

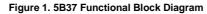
response, connect a 47 M Ω , 0.25 W resistor across screw terminals 1 and 3. The 5B37 protects the computer side from damage due to field-side overvoltage faults. All models withstand 240 V rms at their input terminals without damage, thereby shielding computer-side circuitry from field-side overvoltage conditions. Further, the 5B37 is mixand-match and hot-swappable with other 5B Series modules, so can be inserted or removed from any socket in the same backplane without disrupting system power.

NPUT.	-100°C	+ 750"C
DUSTRUT.	87	+\$1
	gate co	CE \$747-01
GI	CE S	2

Inside the 5B37 Module


A chopper-stabilized input amplifier provides low drift and stable gain. At the amplifier input, a stable, laser-trimmed zero-scale input voltage is subtracted from the input signal to set the zero-scale value. For user convenience, the zero can be optionally factory-set to meet custom needs. This allows suppression of a zero-scale input value many times larger than the total span for precise expanded-scale measurements.

Internal multi-pole lowpass filtering with a four-Hz cutoff (-3 dB) provides 60 dB of normal-mode rejection (noise on signal) and enhancement of common-mode rejection (noise on signal return) at 60 Hz, enabling accurate measurement of small signals in high electrical noise.


Signal isolation by transformer coupling uses a proprietary modulation technique for linear, stable and reliable performance. The differential input circuit on the field side is fully floating, eliminating the need for any input grounding. A demodulator on the computer side of the signal transformer recovers the original signal, which is then filtered and buffered to provide a low-noise, low-impedance output signal. The output common must be kept within 3 V of power common.

Convenience Features

A series output switch eliminates the need for external multiplexing in many applications. The switch is turned on by an active-low enable input. The enable input should be grounded to power common if the output need not be switched, as on the 5B01 and 5B08 backplanes.

NC = NO CONNECTION

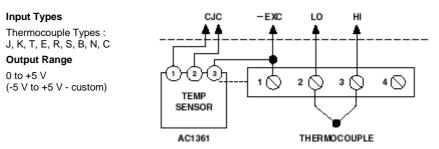


Figure 2. 5B37 Input Field Connections

Model	Input Type	Input Range	Output Range
5B37-J-01	Туре Ј	-100°C to +760°C (-148°F to +1400°F)	0 V to +5 V
5B37-K-02	Туре К	-100°C to +1350°C (-148°F to +2462°F)	0 V to +5 V
5B37-T-03	Туре Т	-100°C to +400°C (-148°F to +752°F)	0 V to +5 V
5B37-E-04	Туре Е	0°C to +900°C (+32°F to +1652°F)	0 V to +5 V
5B37-R-05	Type R	0°C to +1750°C (+32°F to +3182°F)	0 V to +5 V
5B37-S-05	Type S	0°C to +1750°C (+32°F to +3182°F)	0 V to +5 V
5B37-B-06	Туре В	0°C to +1800°C (+32°F to +3272°F)	0 V to +5 V
5B37-N-08	Туре N	0°C to +1300°C (+32°F to +2372°F)	0 V to +5 V
5B37-Custom	Type J, K, T, E, R, S, B, N, C	*	*

* Custom Input/Output ranges are available. Refer to configuration guide.

5B37 Specifications (typical @ +25°C and $V_s = +5 V dc$)

Description	Model 5B37				
	Input Ranges				
Standard Ranges	Refer to Model Table				
Custom Ranges	±5 mV to ±500 mV				
Output Range (R _L > 50 k Ω) ⁴	-5 V to +5 V or 0 to +5 V				
Accuracy ²					
Initial @ +25°C	±0.05% Span ±10 μV RTI ±0.05% of Vz ¹ +CJC Sensor Error				
Nonlinearity	±0.02% Span				
Input Offset vs. Temperature	±1 µV/°C				
Output Offset vs. Temperature	±20 μV/°C				
Gain vs. Temperature	±0.0025% of Reading/°C				
	Cold Junction Compensation				
Initial Accuracy @ +25°C ³	±0.25°C (±0.75°C, maximum)				
Accuracy, +5°C to +45°C	±0.5°C (±0.0125°C/°C)				
Input Bias Current	-25 nA				
	Input Resistance				
Power On	5 M Ω				
Power Off	40 k Ω				
Overload	40 k Ω				
	Noise				
Input, 0.1 Hz to 10 Hz Bandwidth	0.2 μV rms				
Output, 100 kHz Bandwidth	200 µV rms				
Bandwidth, -3 dB	4 Hz				
Output Rise Time, 10% to 90% Span	200 ms				
	Common-Mode Voltage (CMV) ⁴				
Input-to-Output, Continuous	1500 V rms, maximum				
Output-to-Power, Continuous	±3 V, maximum				
Transient	ANSI/IEEE C37.90.1-1989				
	Common Mode Rejection (CMR)				
_{1 k} Ω Source Imbalance, 50/60 Hz	160 dB				
Normal Mode Rejection (NMR), 50/60 Hz	60 dB				
	Input Protection				
Continuous	240 V rms, maximum				
Transient	ANSI/IEEE C37.90.1-1989				
Output Resistance	₅₀ Ω				
Voltage Output Protection	Continuous Short to Ground				
Output Selection Time	6 μs @ C _{load} = 0 to 2,000 Pf				

Output Enable Control				
Max Logic "0"	+1 V			
Min Logic "1"	+2.5 V			
Max Logic "1"	+36 V			
Input Current "0"	0.4 mA			
Open Input Response	Upscale			
Open Input Response Time	10 seconds			
Power Supply Voltage	+5 V ±5%			
Power Supply Current	30 mA			
Power Supply Sensitivity, RTI	$\pm 2 \mu V/\%$ of V _s			
Mechanical Dimensions	2.275" x 2.375" x 0.595" (57.8 mm x 59.1 mm x 15.1 mm)			
	Environmental			
	Temperature Range			
Rated Performance	-25°C to +85°C			
Operating	-40°C to +85°C			
Storage	-40°C to +85°C			
Relative Humidity	0 to 93% @ +40°C noncondensing			
RFI Susceptibility	±0.5% Span error @ 400 MHz, 5 Watt, 3 ft			

¹Vz is the nominal input voltage that results in a 0 V output.

²Includes the combined effects of repeatability, hysteresis, and nonlinearity and assumes $R_L > 50 \text{ k}\Omega$. Loads

heavier than 50 k Ω will degrade nonlinearity and gain temperature coefficient. ³When used with the model AC1361 CJC sensor (see Accessories section), which is provided on each channel of 5B Series backplanes and mounting cards. ⁴The output common must be kept within ±3 V of power common.